Nitric oxide augments fetal pulmonary artery endothelial cell angiogenesis in vitro.

نویسندگان

  • Vivek Balasubramaniam
  • Anne M Maxey
  • Brian W Fouty
  • Steven H Abman
چکیده

Growth and development of the lung normally occur in the low oxygen environment of the fetus. The role of this low oxygen environment on fetal lung endothelial cell growth and function is unknown. We hypothesized that low oxygen tension during fetal life enhances pulmonary artery endothelial cell (PAEC) growth and function and that nitric oxide (NO) production modulates fetal PAEC responses to low oxygen tension. To test this hypothesis, we compared the effects of fetal (3%) and room air (RA) oxygen tension on fetal PAEC growth, proliferation, tube formation, and migration in the presence and absence of the NO synthase (NOS) inhibitor N(omega)-nitro-l-arginine (LNA), and an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). Compared with fetal PAEC grown in RA, 3% O(2) increased tube formation by over twofold (P < 0.01). LNA treatment reduced tube formation in 3% O(2) but had no affect on tube formation in RA. Treatment with SNAP increased tube formation during RA exposure to levels observed in 3% O(2). Exposure to 3% O(2) for 48 h attenuated cell number (by 56%), and treatment with LNA reduced PAEC growth by 44% in both RA and 3% O(2). We conclude that low oxygen tension enhances fetal PAEC tube formation and that NO is essential for normal PAEC growth, migration, and tube formation. Furthermore, we conclude that in fetal cells exposed to the relative hyperoxia of RA, 21% O(2), NO overcomes the inhibitory effects of the increased oxygen, allowing normal PAEC angiogenesis and branching. We speculate that NO production maintains intrauterine lung vascular growth and development during exposure to low O(2) in the normal fetus. We further speculate that NO is essential for pulmonary angiogenesis in fetal animal exposed to increased oxygen tension of RA and that impaired endothelial NO production may contribute to the abnormalities of angiogenesis see in infants with bronchopulmonary dysplasia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic intrauterine pulmonary hypertension increases endothelial cell Rho kinase activity and impairs angiogenesis in vitro.

Persistent pulmonary hypertension of the newborn (PPHN) is characterized by endothelial dysfunction and decreased vascular growth. The role of Rho kinase activity in modulating endothelial function and regulating angiogenesis during normal lung development and in PPHN is unknown. We hypothesized that PPHN increases Rho kinase activity in fetal pulmonary artery endothelial cells (PAECs) and impa...

متن کامل

Sepiapterin improves angiogenesis of pulmonary artery endothelial cells with in utero pulmonary hypertension by recoupling endothelial nitric oxide synthase.

Persistent pulmonary hypertension of the newborn (PPHN) is associated with decreased blood vessel density that contributes to increased pulmonary vascular resistance. Previous studies showed that uncoupled endothelial nitric oxide (NO) synthase (eNOS) activity and increased NADPH oxidase activity resulted in marked decreases in NO bioavailability and impaired angiogenesis in PPHN. In the presen...

متن کامل

Intrauterine pulmonary hypertension impairs angiogenesis in vitro: role of vascular endothelial growth factor nitric oxide signaling.

RATIONALE Mechanisms that impair angiogenesis in neonatal persistent pulmonary hypertension (PPHN) are poorly understood. OBJECTIVES To determine if PPHN alters fetal pulmonary artery endothelial cell (PAEC) phenotype and impairs growth and angiogenesis in vitro, and if altered vascular endothelial growth factor-nitric oxide (VEGF-NO) signaling contributes to this abnormal phenotype. METHOD...

متن کامل

Interaction of endothelial nitric oxide synthase with mitochondria regulates oxidative stress and function in fetal pulmonary artery endothelial cells.

An increase in oxygen tension at birth is one of the key signals that initiate pulmonary vasodilation in the fetal lung. We investigated the hypothesis that targeting endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane regulates reactive oxygen species (ROS) formation in the fetal pulmonary artery endothelial cells (PAEC) during this transition. We isolated PAEC and pul...

متن کامل

Interaction of Endothelial Nitric Oxide Synthase with Mitochondria Regulates Oxidative

39 An increase in oxygen tension at birth is one of the key signals that initiate pulmonary 40 vasodilation in the fetal lung. We investigated the hypothesis that targeting endothelial 41 nitric oxide synthase (eNOS) to the mitochondrial outer membrane regulates reactive 42 oxygen species (ROS) formation in the fetal pulmonary artery endothelial cells (PAEC) 43 during this transition. We isolat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 290 6  شماره 

صفحات  -

تاریخ انتشار 2006